Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
2.
Curr Opin Genet Dev ; 83: 102133, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951138

ABSTRACT

The noncoding genome imparts important regulatory control over gene expression. In particular, gene enhancers represent a critical layer of control that integrates developmental and differentiation signals outside the cell into transcriptional outputs inside the cell. Recently, there has been an explosion in genomic techniques to probe enhancer control, function, and regulation. How enhancers are regulated and integrate signals in stem cell development and differentiation is largely an open question. In this review, we focus on the role gene enhancers play in muscle stem cell specification, differentiation, and progression. We pay specific attention toward the identification of muscle-specific enhancers, the binding of transcription factors to these enhancers, and how enhancers communicate to their target genes via three-dimensional looping.


Subject(s)
Muscle, Skeletal , Transcription Factors , Transcription Factors/genetics , Cell Differentiation/genetics , Muscle, Skeletal/metabolism , Stem Cells/metabolism , Enhancer Elements, Genetic
3.
Nat Cell Biol ; 25(12): 1758-1773, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919520

ABSTRACT

Skeletal muscle stem and progenitor cells including those derived from human pluripotent stem cells (hPSCs) offer an avenue towards personalized therapies and readily fuse to form human-mouse myofibres in vivo. However, skeletal muscle progenitor cells (SMPCs) inefficiently colonize chimeric stem cell niches and instead associate with human myofibres resembling foetal niches. We hypothesized competition with mouse satellite cells (SCs) prevented SMPC engraftment into the SC niche and thus generated an SC ablation mouse compatible with human engraftment. Single-nucleus RNA sequencing of SC-ablated mice identified the absence of a transient myofibre subtype during regeneration expressing Actc1. Similarly, ACTC1+ human myofibres supporting PAX7+ SMPCs increased in SC-ablated mice, and after re-injury we found SMPCs could now repopulate into chimeric niches. To demonstrate ACTC1+ myofibres are essential to supporting PAX7 SMPCs, we generated caspase-inducible ACTC1 depletion human pluripotent stem cells, and upon SMPC engraftment we found a 90% reduction in ACTC1+ myofibres and a 100-fold decrease in PAX7 cell numbers compared with non-induced controls. We used spatial RNA sequencing to identify key factors driving emerging human niche formation between ACTC1+ myofibres and PAX7+ SMPCs in vivo. This revealed that transient regenerating human myofibres are essential for emerging niche formation in vivo to support PAX7 SMPCs.


Subject(s)
Muscle, Skeletal , PAX7 Transcription Factor , Regeneration , Satellite Cells, Skeletal Muscle , Animals , Humans , Mice , Muscle, Skeletal/physiology , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Pluripotent Stem Cells , Satellite Cells, Skeletal Muscle/physiology
4.
Mol Ther Methods Clin Dev ; 30: 90-102, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37746243

ABSTRACT

High systemic doses of adeno-associated viruses (AAVs) have been associated with immune-related serious adverse events (SAEs). Although AAV was well tolerated in preclinical models, SAEs were observed in clinical trials, indicating the need for improved preclinical models to understand AAV-induced immune responses. Here, we show that mice dual-dosed with AAV9 at 4-week intervals better recapitulate aspects of human immunity to AAV. In the model, anti-AAV9 immunoglobulin G (IgGs) increased in a linear fashion between the first and second AAV administrations. Complement activation was only observed in the presence of high levels of both AAV and anti-AAV IgG. Myeloid-derived pro-inflammatory cytokines were significantly induced in the same pattern as complement activation, suggesting that myeloid cell activation to AAV may rely on the presence of both AAV and anti-AAV IgG complexes. Single-cell RNA sequencing of peripheral blood mononuclear cells confirmed that activated monocytes were a primary source of pro-inflammatory cytokines and chemokines, which were significantly increased after a second AAV9 exposure. The same activated monocyte clusters expressed both Fcγ and complement receptors, suggesting that anti-AAV-mediated activation of myeloid cells through Fcγ receptors and/or complement receptors is one mechanism by which anti-AAV antigen complexes may prime antigen-presenting cells and amplify downstream immunity.

5.
J Nanobiotechnology ; 21(1): 303, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37641124

ABSTRACT

Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease. In this study, we utilized a versatile intravenously injectable mesoporous silica nanoparticle (MSNP) based nanocarrier system to explore mechanisms of biodistribution in skeletal muscle of mdx mouse models of DMD including wildtype, dystrophic, and severely dystrophic mice. Moreover, MSNPs could be imaged in live mice and whole muscle tissues enabling investigation of how biodistribution is altered by different types of muscle pathology such as inflammation or fibrosis. We found MSNPs were tenfold more likely to aggregate within select mdx muscles relative to wild type, such as gastrocnemius and quadriceps. This was accompanied by decreased biodistribution in off-target organs. We found the greatest factor affecting preferential delivery was the regenerative state of the dystrophic skeletal muscle with the highest MSNP abundance coinciding with the regions showing the highest level of embryonic myosin staining and intramuscular macrophage uptake. To demonstrate, muscle regeneration regulated MSNP distribution, we experimentally induced regeneration using barium chloride which resulted in a threefold increase of intravenously injected MSNPs to sites of regeneration 7 days after injury. These discoveries provide the first evidence that nanoparticles have selective biodistribution to skeletal muscle in DMD to areas of active regeneration and that nanoparticles could enable diagnostic and selective drug delivery in DMD skeletal muscle.


Subject(s)
Dystrophin , Muscle, Skeletal , Animals , Mice , Tissue Distribution , Mice, Inbred mdx , Regeneration
6.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37366057

ABSTRACT

The earliest skeletal muscle progenitor cells (SMPCs) derived from human pluripotent stem cells (hPSCs) are often identified by factors expressed by a diverse number of progenitors. An early transcriptional checkpoint that defines myogenic commitment could improve hPSC differentiation to skeletal muscle. Analysis of several myogenic factors in human embryos and early hPSC differentiations found SIX1+PAX3+ co-expression was most indictive of myogenesis. Using dCas9-KRAB hPSCs, we demonstrate that early inhibition of SIX1 alone significantly decreased PAX3 expression, reduced PAX7+ SMPCs, and myotubes later in differentiation. Emergence of SIX1+PAX3+ precursors can be improved by manipulating seeding density, monitoring metabolic secretion and altering the concentration of CHIR99021. These modifications resulted in the co-emergence of hPSC-derived sclerotome, cardiac and neural crest that we hypothesized enhanced hPSC myogenic differentiation. Inhibition of non-myogenic lineages modulated PAX3 independent of SIX1. To better understand SIX1 expression, we compared directed differentiations to fetal progenitors and adult satellite cells by RNA-seq. Although SIX1 continued to be expressed across human development, SIX1 co-factor expression was dependent on developmental timing. We provide a resource to enable efficient derivation of skeletal muscle from hPSCs.


Subject(s)
Pluripotent Stem Cells , Adult , Humans , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Muscle, Skeletal/metabolism , Muscle Development/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Homeodomain Proteins/metabolism
7.
Cell ; 186(10): 2041-2043, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172560

ABSTRACT

Viruses and multinucleated cells rely on fusogens to facilitate the fusion of their membranes. In this issue of Cell, Millay and colleagues demonstrate that replacing viral fusogens with mammalian skeletal muscle fusogens leads to the specific transduction of skeletal muscle and the ability to deliver gene therapy constructs in a therapeutically relevant muscle disease.


Subject(s)
Genetic Therapy , Muscle, Skeletal , Viruses , Animals , Cell Fusion , Mammals
8.
Front Physiol ; 14: 1190524, 2023.
Article in English | MEDLINE | ID: mdl-37228827

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by an out-of-frame mutation in the DMD gene that results in the absence of a functional dystrophin protein, leading to a devastating progressive lethal muscle-wasting disease. Muscle stem cell-based therapy is a promising avenue for improving muscle regeneration. However, despite the efforts to deliver the optimal cell population to multiple muscles most efforts have failed. Here we describe a detailed optimized method of for the delivery of human skeletal muscle progenitor cells (SMPCs) to multiple hindlimb muscles in healthy, dystrophic and severely dystrophic mouse models. We show that systemic delivery is inefficient and is affected by the microenvironment. We found that significantly less human SMPCs were detected in healthy gastrocnemius muscle cross-sections, compared to both dystrophic and severely dystrophic gastrocnemius muscle. Human SMPCs were found to be detected inside blood vessels distinctly in healthy, dystrophic and severely dystrophic muscles, with prominent clotting identified in severely dystrophic muscles after intra arterial (IA) systemic cell delivery. We propose that muscle microenvironment and the severity of muscular dystrophy to an extent impacts the systemic delivery of SMPCs and that overall systemic stem cell delivery is not currently efficient or safe to be used in cell based therapies for DMD. This work extends our understanding of the severe nature of DMD, which should be taken into account when considering stem cell-based systemic delivery platforms.

9.
NPJ Regen Med ; 8(1): 16, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922514

ABSTRACT

We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds. All SPMC interactions with fibrotic myoscaffolds from dystrophic muscle were severely blunted including reduced motility rate and migration. Furthermore, SMPCs were unable to remodel laminin dense fibrotic scars within diseased myoscaffolds. Proteomics and structural analysis revealed that excessive collagen deposition alone is not pathological, and can be compensatory, as revealed by overexpression of sarcospan and its associated ECM receptors in dystrophic muscle. Our in vivo data also supported that ECM remodeling is important for SMPC engraftment and that fibrotic scars may represent one barrier to efficient cell therapy.

10.
Trends Cell Biol ; 33(2): 112-123, 2023 02.
Article in English | MEDLINE | ID: mdl-35934562

ABSTRACT

Stem cell niches are composed of dynamic microenvironments that support stem cells over a lifetime. The emerging niche is distinct from the adult because its main role is to support the progenitors that build organ systems in development. Emerging niches mature through distinct stages to form the adult niche and enable proper stem cell support. As a model of emerging niches, this review highlights how differences in the skeletal muscle microenvironment influence emerging versus satellite cell (SC) niche formation in skeletal muscle, which is among the most regenerative tissue systems. We contrast how stem cell niches regulate intrinsic properties between progenitor and stem cells throughout development to adulthood. We describe new applications for generating emerging niches from human pluripotent stem cells (hPSCs) using developmental principles and highlight potential applications for regeneration and therapeutics.


Subject(s)
Pluripotent Stem Cells , Satellite Cells, Skeletal Muscle , Humans , Cell Differentiation , Stem Cell Niche/physiology , Muscle, Skeletal
11.
iScience ; 25(11): 105415, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36388984

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by out-of-frame mutations in the DMD gene resulting in the absence of a functional dystrophin protein, leading to a devastating and progressive lethal muscle-wasting disease. Little is known about cellular heterogeneity as disease severity increases. Advances in single-cell RNA sequencing (scRNA-seq) enabled us to explore skeletal muscle-resident cell populations in healthy, dystrophic, and severely dystrophic mouse models. We found increased frequencies of activated fibroblasts, fibro-adipogenic progenitor cells, and pro-inflammatory macrophages in dystrophic gastrocnemius muscles and an upregulation of extracellular matrix genes on endothelial cells in dystrophic and severely dystrophic muscles. We observed a pronounced risk of clotting, especially in the severely dystrophic mice with increased expression of plasminogen activator inhibitor-1 in endothelial cells, indicating endothelial cell impairment as disease severity increases. This work extends our understanding of the severe nature of DMD which should be considered when developing single or combinatorial approaches for DMD.

12.
Nat Cancer ; 3(8): 961-975, 2022 08.
Article in English | MEDLINE | ID: mdl-35982179

ABSTRACT

Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Child , Humans , Muscle, Skeletal/pathology , Rhabdomyosarcoma/genetics , Single-Cell Analysis , Stem Cells/pathology
13.
Exp Cell Res ; 411(2): 112990, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34973262

ABSTRACT

Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.


Subject(s)
Muscle Development/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Cell Differentiation/physiology , Humans , Models, Biological , Muscle Development/genetics , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/physiology , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology
14.
Yale J Biol Med ; 94(4): 545-557, 2021 12.
Article in English | MEDLINE | ID: mdl-34970092

ABSTRACT

CPS1 deficiency is an inborn error of metabolism caused by loss-of-function mutations in the CPS1 gene, catalyzing the initial reaction of the urea cycle. Deficiency typically leads to toxic levels of plasma ammonia, cerebral edema, coma, and death, with the only curative treatment being liver transplantation; due to limited donor availability and the invasiveness and complications of the procedure, however, alternative therapies are needed. Induced pluripotent stem cells offer an alternative cell source to partial or whole liver grafts that theoretically would not require immune suppression regimens and additionally are amenable to genetic modifications. Here, we genetically modified CPS1 deficient patient-derived stem cells to constitutively express human codon optimized CPS1 from the AAVS1 safe harbor site. While edited stem cells efficiently differentiated to hepatocyte-like cells, they failed to metabolize ammonia more efficiently than their unedited counterparts. This unexpected result appears to have arisen in part due to transgene promoter methylation, and thus transcriptional silencing, in undifferentiated cells, impacting their capacity to restore the complete urea cycle function upon differentiation. As pluripotent stem cell strategies are being expanded widely for potential cell therapies, these results highlight the need for strict quality control and functional analysis to ensure the integrity of cell products.


Subject(s)
Induced Pluripotent Stem Cells , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Genomics , Homeostasis , Humans , Nitrogen
15.
NPJ Regen Med ; 6(1): 77, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34815400

ABSTRACT

Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.

16.
Nat Commun ; 12(1): 2595, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972536

ABSTRACT

Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (µm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.


Subject(s)
Epidermis/anatomy & histology , Epidermis/metabolism , Hair Follicle/metabolism , Morphogenesis/physiology , Regeneration/physiology , Twist-Related Protein 1/metabolism , Wound Healing/physiology , Animals , Epidermis/physiology , Gene Expression Profiling , Hair Follicle/anatomy & histology , Hair Follicle/physiology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microarray Analysis , Microscopy, Atomic Force , Models, Psychological , Morphogenesis/genetics , Murinae , RNA-Seq , Regeneration/genetics , Regenerative Medicine , Signal Transduction/genetics , Signal Transduction/physiology , Spatio-Temporal Analysis , Twist-Related Protein 1/genetics , Wound Healing/genetics
17.
STAR Protoc ; 1(3): 100158, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377052

ABSTRACT

This protocol describes the use of CRISPR/Cas9-mediated homology-directed recombination to construct a PAX7-GFP reporter in human pluripotent stem cells (hPSCs). PAX7 is a key transcription factor and regulator of skeletal muscle stem/progenitor cells. We obtained heterozygous knockin reporter cells and validated their PAX7 expression using both artificial activation by the CRISPR/dCas9-VPR system and physiological activation during hPSC myogenic differentiation. These cells can serve as tools for better understanding of in vitro hPSC myogenesis and enriching myogenic cells for downstream analysis. For complete details on the use and execution of this protocol, please refer to Xi et al. (2017) and Xi et al. (2020).


Subject(s)
Genes, Reporter , Muscle Development , PAX7 Transcription Factor/metabolism , Pluripotent Stem Cells/metabolism , 3' Untranslated Regions/genetics , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Cell Count , Cell Differentiation , Conserved Sequence , Drug Resistance, Microbial , Genotype , Humans , Mammals , Mesoderm/embryology , MicroRNAs/genetics , MicroRNAs/metabolism , PAX7 Transcription Factor/chemistry , Plasmids/genetics , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results , Somites/embryology
18.
Cell Rep Med ; 1(7): 100122, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33205074

ABSTRACT

Mutations in CAPN3 cause limb girdle muscular dystrophy R1 (LGMDR1, formerly LGMD2A) and lead to progressive and debilitating muscle wasting. Calpain 3 deficiency is associated with impaired CaMKIIß signaling and blunted transcriptional programs that encode the slow-oxidative muscle phenotype. We conducted a high-throughput screen on a target of CaMKII (Myl2) to identify compounds to override this signaling defect; 4 were tested in vivo in the Capn3 knockout (C3KO) model of LGMDR1. The leading compound, AMBMP, showed good exposure and was able to reverse the LGMDR1 phenotype in vivo, including improved oxidative properties, increased slow fiber size, and enhanced exercise performance. AMBMP also activated CaMKIIß signaling, but it did not alter other pathways known to be associated with muscle growth. Thus, AMBMP treatment activates CaMKII and metabolically reprograms skeletal muscle toward a slow muscle phenotype. These proof-of-concept studies lend support for an approach to the development of therapeutics for LGMDR1.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calpain/genetics , Cardiac Myosins/genetics , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/drug therapy , Myosin Light Chains/genetics , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calpain/deficiency , Cardiac Myosins/metabolism , Cell Line , Creatine Kinase, Mitochondrial Form/genetics , Creatine Kinase, Mitochondrial Form/metabolism , Female , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/deficiency , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Myosin Light Chains/metabolism , Oxidative Stress , Phenotype , Physical Conditioning, Animal , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction
19.
Mol Ther Nucleic Acids ; 22: 500-509, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33230452

ABSTRACT

Utrophin upregulation is considered a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). A number of microRNAs (miRNAs) post-transcriptionally regulate utrophin expression by binding their cognate sites in the 3' UTR. Previously we have shown that miRNA: UTRN repression can be alleviated using miRNA let-7c site blocking oligonucleotides (SBOs) to achieve utrophin upregulation and functional improvement in mdx mice. Here, we used CRISPR/Cas9-mediated genome editing to delete five miRNA binding sites (miR-150, miR-296-5p, miR-133b, let-7c, miR-196b) clustered in a 500 bp inhibitory miRNA target region (IMTR) within the UTRN 3' UTR, for achieving higher expression of endogenous utrophin. Deleting the UTRN IMTR in DMD patient-derived human induced pluripotent stem cells (DMD-hiPSCs) resulted in ca. 2-fold higher levels of utrophin protein. Differentiation of the UTRN edited DMD-hiPSCs (UTRNΔIMTR) by MyoD overexpression resulted in increased sarcolemmal α-sarcoglycan staining consistent with improved dystrophin glycoprotein complex (DGC) restoration. These results demonstrate that CRISPR/Cas9-based UTRN genome editing offers a novel utrophin upregulation therapeutic strategy applicable to all DMD patients, irrespective of the dystrophin mutation status.

SELECTION OF CITATIONS
SEARCH DETAIL
...